Maths with Melissa

Single Brackets: Problem Solving

- 1. Simplify the following expression and explain each step: 3[2x + 4] 5.
- 2. If a student claims that 2[3x 4] = 6x 4, identify and explain the error in their reasoning.
- 3. Expand and simplify: 4[5 2y] + 3[y + 1]. Show your working and reasoning.
- 4. Given the expression 7 2[4x 1], describe how the value of the expression changes as x increases. Explain your reasoning.
- 5. A teacher writes the following on the board: 6[2a + 3] 4[5 a]. Without calculating, predict whether the result will be positive, negative, or zero for a = 1. Justify your answer.
- 6. Rewrite the expression 8 3[2x + 5] so that it does not contain any brackets, and explain why each term is positive or negative.
- 7. Create an expression using single brackets that is equivalent to 10x 15. Explain your process.
- 8. Two students expanded 5[x 2] differently: Student A got 5x 10, Student B got 5x 2. Who is correct? Explain why.
- 9. If m = -2, evaluate and explain the steps for the expression 4[3m + 7].
- 10. Explain why the distributive property is important when working with single brackets. Give an example to support your explanation.

Maths with Melissa

Answer Key

- 1. $3[2x + 4] 5 = 3 \times 2x + 3 \times 4 5 = 6x + 12 5 = 6x + 7$. Each term inside the brackets is multiplied by 3, then subtract 5.
- 2. The error is not multiplying both terms inside the brackets by 2; the correct expansion is $2 \times 3x 2 \times 4 = 6x 8$.
- 3. $4[5-2y] + 3[y+1] = 4 \times 5 4 \times 2y + 3 \times y + 3 \times 1 = 20 8y + 3y + 3 = 23 5y$. Each bracket is expanded separately, then like terms are combined.
- 4. As x increases, 4x increases, so 2[4x 1] increases, making 7 (a larger number), so the expression decreases as x increases.
- 5. Substitute a = 1: $6[2 \times 1 + 3] 4[5 1] = 6[2 + 3] 4[4] = 6 \times 5 16 = 30 16 = 14$ (positive). Since the first bracket gives a larger positive value than the second, the result is positive.
- 6. $8 3[2x + 5] = 8 (3 \times 2x + 3 \times 5) = 8 6x 15 = -6x 7$. Each term in the bracket is multiplied by -3, changing their signs accordingly.
- 7. One possible expression: $5[2x 3] = 5 \times 2x 5 \times 3 = 10x 15$. The process involves factoring 10x 15 as 5(2x 3).
- 8. Student A is correct; $5[x-2] = 5 \times x 5 \times 2 = 5x 10$. Student B did not multiply -2 by 5.
- 9. Substitute m = -2: $4[3 \times -2 + 7] = 4[-6 + 7] = 4[1] = 4$. Each operation is performed step by step.
- 10. The distributive property ensures all terms inside the bracket are multiplied by the factor outside. For example, 2[a + 5] = 2a + 10; missing this step leads to incorrect answers.