Maths with Melissa

Midpoint Proof

Introduction

In geometry, the midpoint of a line segment is the point that divides the segment into two equal parts. If you have two points, $A(x_1, y_1)$ and $B(x_2, y_2)$, the midpoint M is given by:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Below is a step-by-step proof of why this formula gives the correct midpoint.

Proof: Midpoint Formula

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points in the Cartesian plane. We want to find the point $M(x_m, y_m)$ that is exactly halfway between A and B.

Step 1: Find the change in x and y

The horizontal distance between *A* and *B* is: $\Delta x = x_2 - x_1$

The vertical distance between A and B is: $\Delta y = y_2 - y_1$

Step 2: Find the halfway point

To find the midpoint, take half of the horizontal and vertical distances and add them to the coordinates of *A*:

1

$$x_m = x_1 + \frac{\Delta x}{2} = x_1 + \frac{x_2 - x_1}{2} y_m = y_1 + \frac{\Delta y}{2} = y_1 + \frac{y_2 - y_1}{2}$$

Step 3: Simplify the expressions

$$x_m = x_1 + \frac{x_2 - x_1}{2} = \frac{2x_1 + x_2 - x_1}{2} = \frac{x_1 + x_2}{2} y_m = y_1 + \frac{y_2 - y_1}{2} = \frac{2y_1 + y_2 - y_1}{2} = \frac{y_1 + y_2}{2}$$

Step 4: State the result

Therefore, the midpoint *M* has coordinates: $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Maths with Melissa

Example

Let A(2,3) and B(6,11). Find the midpoint M.

$$M = \left(\frac{2+6}{2}, \frac{3+11}{2}\right) = (4,7)$$

So, the midpoint is (4,7).

Important: The midpoint formula works in any dimension. For three dimensions, simply add the z-coordinates and divide by 2 as well.

Midpoint Proof Questions

- 1. Given points A(1,5) and B(7,9), use the proof steps to show that the midpoint M is (4,7). Write out each step explicitly.
- 2. Explain why taking half the horizontal and vertical distances and adding them to the coordinates of *A* guarantees that *M* is exactly halfway between *A* and *B*.
- 3. If the midpoint M of $A(x_1, y_1)$ and $B(x_2, y_2)$ is (m_x, m_y) , prove that the distance from A to M is equal to the distance from M to B using the distance formula.
- 4. Given A(-3,2) and B(5,-6), show how the midpoint formula is derived from the general idea of averaging the coordinates, and verify the result using the proof steps.
- 5. In your own words, summarise the logical flow of the midpoint proof and explain why each step is necessary in establishing the formula.

Maths with Melissa

Answer Key

- 1. Step-by-step for A(1,5) and B(7,9):
 - $\Delta x = 7 1 = 6, \Delta y = 9 5 = 4$
 - Halfway: $x_m = 1 + 6/2 = 1 + 3 = 4$, $y_m = 5 + 4/2 = 5 + 2 = 7$
 - So, midpoint M = (4,7).

2. Explanation:

- Because half the distance from A to B in both x and y directions places M equidistant from both endpoints, ensuring M is exactly halfway.
- 3. **Proof using distance formula:**
 - Distance $AM = MB = \sqrt{\left(\frac{x_2 x_1}{2}\right)^2 + \left(\frac{y_2 y_1}{2}\right)^2}$, which confirms both segments are equal.
- 4. For A(-3,2), B(5,-6):
 - Average x: (-3 + 5)/2 = 1, average y: (2 + -6)/2 = -2
 - Proof steps: $\Delta x = 8$, $x_m = -3 + 8/2 = 1$; $\Delta y = -8$, $y_m = 2 + (-8)/2 = -2$
 - Result matches: (1, -2).

5. Summary:

• The proof shows the midpoint is found by averaging coordinates, justified by halving the distance in each direction and ensuring the point is equidistant from both endpoints.